
A C64 Cartridge Without EPROMs
John Bush and Noel Nyman

Seattle, Washington

you won't need any expensive programming devices to make your

own cartridges for a C64 or C128 with this special technique

Cartridges are convenient and easy to use. Programs on cartridge

Load instantly. You can make a cartridge using EPROMs (Erasable

Programmable Read-Only Memories) for about $25, if you shop

carefully.

But, the EPROMs must be programmed or "burned" using an

EPROM burner, which costs about $125. If you make any mis

takes, or want to change the programs, you'll need an EPROM

eraser, another $40.

The inexpensive EPROM cartridge requires close to $200 in start

up costs.

An alternative is to use RAM (Random Access Memory) in place of

EPROMs. RAM can be programmed by the computer itself, and the

information can be changed at any time. No addition?] special

equipment is required.

The problem with RAM is that it loses everything in memory when

the power is turned off, not exactly what we have in mind for a

cartridge. But, by using special CMOS (Complementary Metal

Oxide Semiconductor) RAMs that have low stand-by current

requirements, we can use a small battery to hold the information

in the RAM. The memory is retained even with the computer

turned off or when the cartridge is removed. The 4464-15s, made

by NEC Corp, used in this project have a typical stand-by current

drain of 0.1 micro-amperes. A battery the size of a quarter can

power them for several years.

Building The RAM Cartridge

We used a Vector 3795-1 "perf" board for our prototype. It has 44

circuit traces (22 on each side) at the proper spacing to line up with

the C64 expansion socket. If you have the equipment to etch your

own circuit boards, that may be a less expensive alternative. You

may be able to adapt an old cartridge board, or purchase one

intended for use in a C64. Be sure that address lines A13 through

A15 (pins F, H, and J) are available on the board you use. They

aren't needed by EPROM cartridges and may not appear on circuit

boards designed for that purpose.

Although we used wire-wrap to build the circuit, any wiring

method will work. Sockets are recommended for the integrated

circuits, but are not mandatory. Be sure to observe proper precau

tions when working with the CMOS RAM's. They can be perma

nently damaged by improper handling.

Figure #1 shows the schematic for an 8K RAM cartridge. Figure #2

has the additional circuitry required to add another 8K. Switch SI

controls the power to the CMOS RAMs. With the switch closed,

power comes from the C64. With either SI open or the computer

turned off, the battery takes over and retains the data in memory.

52 controls the READ/WRITE signals to the RAMs. With this

switch closed, the computer can change the data. Opening S2

makes the RAMs look like ROM to the C64.

53 and S4 allow the RAM cartridge to emulate the three types of

cartridge used with the C64, which we'll look at shortly. S5 is used

only with the 16K version. It allows us to "move" the upper 8K of

RAM to an area where it can be programmed. The diodes electri

cally remove the battery from the circuit when the computer is

supplying power and prevents the battery from trying to run the

entire C64. The various resistors establish default values for the

signal lines and switch the RAMs to their low current stand-by

state when SI is opened.

The 74LS42 is a decoder that monitors the three highest address

lines (A13 - A15), and produces a discrete output for each combi

nation of these addresses. There are eight outputs, so we can select

eight 8K banks of memory with this chip. Capacitors Cl and C2 are

used to remove any noise from the power line. Cl should be

placed close to the edge of the board that plugs into the computer.

C2 should be mounted as close as possible to the 74LS42.

You may find other 8 x 8K RAMs with similar stand-by current

characteristics. If they have 150ns (nano-second) access time or

less, they should work for this application. Be sure to get data

sheets for them. The pin-outs may be different from those shown

on these schematics. See the end of this article for a source for the

NEC 4464-15s we used, or check your yellow pages under "Elec

tronic Equipment" for a local NEC distributor.

Parts List

B1 - 3 Volt Circuit Battery (see text)

Cl, C2 - 0.05 mfd 12VDC Ceramic Disk Capacitor

D l -D4 - 1N4148 or Similar Small Signal Diode

R1,R3,R4,R5,R7 - 2K 1/4 Watt Resistor

R2.R6 - 22K 1 /4 Watt Resistor

S1-S4 - SPST Switches, DIP Arrays Work Well

S5 - SPDT Miniature Switch

74LS42 - 1 of 10 BCD Decoder

4464 - Low Stand-By Current CMOS Static RAM (see

text)

Th© Ttansocfor 49 Jan. 1987: Volume 7, blue O4

(2,3) +5 VDC

r>2 D3

(F)

(H)

(J!

A15

A14

A13

Bl

VI V2 I

13

1 5

16

-74LS42-

3,12

-♦- $6000

VI

R£>

K2

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

D7

D6

D5
DA

D3

D2

Dl

DC)

(5) READ/

WRITE S2

22

-4464-

19
18

17

16

15
13

12

i 1

,20

2

2 3

2.1

24

25

3

4

5

6

7

8

9

10

A12

All

A10

A9

A8

■ A7

- A6

- A5

- A4

- A3

- A2

- Al

- AC

(K)

(L)

(M)

(N)

(P)

(R)

(S)

(T)

(U)

(V)

(V)

(X)

(Y)

R/W

(9)

(8)

XROM

GAME

S3

(1) GROUND

Figure 1: All references in parentheses are pin numbers for the C64

expansion port, see pg.396 of the C64 Programmers Reference Guide.

$6000*

(B) ROMH

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

A12 (K)

All (L)

A10 (M)

A9 (N)

A8 (P)

A7 (R)

A6 (S)

A5 (T)

A4 (U)

A3 (V)

A2 (W)

Al (X)

A0 (Y)

R/W ►

Figure 2: Additional parts required for a 16K cartridge.

How Cartridges Work

The C64 uses a PLA (Programmed Logic Array) to control

the access of RAM, ROMs, and cartridges to the address

and data buses. For an excellent discussion of how the

PLA works, see "Commodore 64 Memory Configura

tions" by William Levak (Transactor 6-05). Cartridges

can have three configurations. The PLA identifies the

cartridge by two control lines. These are called "GAME"

(pin 8) and "XROM" (pin 9). The RAM cartridge uses

switches S3 and S4 to activate the control lines.

An 8K cartridge always appears at address range $8000 -

$9FFF. It has an internal jumper that pulls the XROM line

low. Closing S4 simulates that configuration. A 16K

cartridge also has 8K at $8000 - $9FFF. The upper 8K can

reside in one of two other areas. If only the GAME line is

low (S3 closed, S4 open), the upper 8K appears at $EO0O

- $FFFF. If both GAME and XROM are low (S3 and S4

closed), all 16K is contiguous from $8000 - $BFFF.

An 8K cartridge normally contains either a self contained

program, or one that uses the BASIC and Kernal ROM

routines built into the C64. A 16K cartridge in the $8000

- $BFFF range replaces the BASIC ROM. The upper 8K

may contain a modified BASIC, and the lower 8K may

have BASIC extensions. The third configuration was

intended for games only. Levak's article shows that in

this mode, the VIC chip will look for the character set at

the upper portion of the $E000 - $FFFF memory. This

makes for easier low resolution graphics for games, but is

unsuitable as a Kernal replacement. The programs in

these cartridges must stand entirely on their own.

All memory chips, RAM or ROM, are switched onto the

address and data buses with "chip select" lines. In the

C64, the PLA controls these lines, and so decides

whether RAM, or one of the system ROMs, or the car

tridge is selected. If the PLA senses that a cartridge is in

place (through the GAME and XROM lines), and a

"READ" command is issued by the microprocessor, the

cartridge memory will be selected. The PLA controls this

selection through the "ROML" (pin 11) and "ROMH" (pin

B) lines. If a "WRITE" command is issued, the PLA

switches off the cartridge memory and selects RAM at

those addresses instead.

Commodore never intended that cartridges would con

tain RAM. So the PLA will not write data into our RAM

cartridge. To accomplish that, we by-pass the PLA and

do our own decoding. Some is done automatically by the

74LS42 chip, and some we control manually with switch

S5.

Programming The RAM Cartridge

When the C64 is turned on, reset with an external reset

switch, or the "RESTORE" key is pressed, routines in the

Kernal ROM look for a cartridge. All cartridges will have

8K starting at location $8000. The Kernal looks for the

code "CBM80" starting at address $8004. The high bit of

Th© TrontocrOf so Jan. 1987: Volume 7. toueO4

each letter must be set. If the code is there, the normal initialization

routines are bypassed, and control is passed to the program in the

cartridge. On power-up or hardware reset, the address stored in

low-high order at $8000/$8001 is used for an indirect jump. If

"RESTORE" has been pressed, the address stored at $8002/$8003

is used instead.

To create an auto-starting program in cartridge, you'll need to

install the code phrase and the proper addresses. You may also

need to call some of the bypassed initializing routines. You can

store machine code in the RAM cartridge without the auto-start

phrase and SYS to the code from BASIC or direct mode instead of

auto-starting.

If you want to use the RAM cartridge to store a favourite BASIC

program, use the program in Listing *1. RUNning the program

creates a file called "RAMCART" on disk device #8. You can

change those defaults in line 100. The source code of the file is

shown in PAL format in Listing *2.

To use the program, install the RAM cartridge, and close SI and S2.

Be sure S3 and S4 are both open. Then turn on the computer. The

cartridge RAM is now "in parallel" with system RAM. The two are

examined together by the C64, and the same data is stored in each

at the corresponding addresses. This step is important. If the two

RAMs contained different data, they would fight each other on the

data bus.

LOAD the "RAMCART" program with ",8,1". This places the code

at the start of RAM cartridge memory. Now LOAD the BASIC

program you want to store. Do not RUN it. Type

SYS 32882

The machine code stored by "RAMCART" will copy the BASIC

program into the cartridge RAM. If the program is too big, over 31

disk blocks, you'll get an error message instead. When the

"READY" prompt appears, open S2. This disconnects the cartridge

from the READ/WRITE line, and the data cannot be changed by

the computer.

Turn off the C64. The battery will retain the program in the

cartridge RAM. Close S4 to tell the PLA that this is an 8K cartridge,

and turn the computer back on. The auto-start code in the RAM

cartridge will cause the system to initialize BASIC normally. Then

it copies your program back to the BASIC memory area. The

"RUN" command is placed in the keyboard buffer and the com

puter executes it, starting your program.

The RUN-STOP/RESTORE combination will bring you out of your

BASIC program and display the "READY" message. To re-RUN

the program in the cartridge, use a hardware reset switch or type

SYS 64738

A different technique is required to program the upper 8K of RAM

in a 16K cartridge. We need to use the ROMH line from the PLA to

select the cartridge memory, since the PLA will switch system

ROM in otherwise. But the PLA will not let us write data to the

memory selected by ROMH. S5 switches the upper 8K RAM select

line between the ROMH output from the PLA and the $6000 -

$7FFF output from the 74LS42. With S5 in the $6000 position, you

can change the upper 8K of data by writing to the RAM at this

lower location. Moving S5 back to the ROMH side causes the PLA

to switch in the RAM at either $A000 or $E000, depending on the

settings of S3 and S4.

For example, to change BASIC, place a 16K ram cartridge in the

computer. Close SI and S2, open S3 and S4, and move S5 to the

$6000 position. Turn on the computer. LOAD a machine language

monitor that resides below $6000 or above $C000, and use it to

copy the BASIC ROM to the RAM at $6000. Use the memory

examine mode to look at the nine bytes starting at $6378. This is

the text "READY." followed by a "RETURN" ($0D), a line feed

($0A), and a terminating zero byte ($00). Use the monitor to

change the text.

Now open S2 to lock the changes in RAM, and turn off the

computer. Move S5 to the ROMH position. Close S3 and S4. This

tells the PLA to place the 8K of RAM with the modified BASIC in

the address area normally used by the BASIC ROM. Turn on the

computer and you'll see your modified "READY" prompt. You'll

also see only 30,719 BASIC bytes free, because the lower 8K of ram

cartridge is also switched in by the PLA. You can use the lower 8K

to hold BASIC programs, or extensions in addition to any modifica

tions you make to the BASIC operating system.

The switch settings for programming and using the cartridge are

summarized in Figure 3.

Figure 3

SI S2 S3 S4 S5

Reading From Cartridge:

8K Cartridge

16K Cart., Upper 8K At $A000

16K Cart., Upper 8K At $E000

Writing To Cartridge:

8K Cartridge

16K Cartridge

The ram cartridge is fully compatible with expansion cards which

allow several cartridges to be plugged in at the same time. Be sure

to turn SI off when you select a different cartridge so the RAM at

$8000 will be removed from the buses. You can use the ram

cartridge on a C128 also. The GAME and XROM lines aren't used

in C128 mode. The MMU (Memory Management Unit) looks for a

different code instead. You'll have to write a C128 auto-boot

routine, but use the procedure above from C64 mode to install it.

We think you'll find the ram cartridge an inexpensive alternative

to purchasing an EPROM burner and eraser to make your own

cartridges. Even if you already have EPROM programming equip

ment, the ease and speed of making changes to your cartridge

software may be an asset.

Although Geoduck Developmental is not in the retail component

sales business, we will make 4464-15 RAMs and battery/socket

kits available at cost for Transactor readers. Please send $15

(Canadian) for each RAM and $5 for each battery and socket. For

orders outside Canada or the USA, add $5 for postage. Send orders

or any questions or comments on the ram cartridge to:

ON

ON

ON

ON

ON

OFF

OFF

OFF

ON

ON

OFF

ON

ON

OFF

OFF

ON

ON

OFF

OFF

OFF

X

ROMH

ROMH

X

$6000

Th© TVonsoctof 51 Jan. W87: Volume 7. touoO4

Geoduck Developmental Service:

PO Box 58587

Seattle WA

USA

98188

Listing 1: Basic Loader To Create RAMCART Module On Disk

FO

AH

IK

KF

El

Cl

JB

HO

MK

NC

BN

FH

ED

LC

10

NL

PI

LH

AM

FO

KO

PM

OD

KC

AN

AB

AG

GL

CA

NG

PL

NE

GL

DG

GF

CO

El

OG

KN

DA

CH

FA

MO

HP

1000 rem save" O:ramcart.ldr ",8

1010 rem ** by: John bush and noel nyman - Seattle, wa

1020 rem ** auto-start support prg

1030 rem ** forc64

1040:

ram cartridge

1050 rem ** this program will

1060 rem •* a load

create

" ,8,1 " module on

1070 rem ♦* disk called 'ramcart'

1080:

1090 open 15,8,15:

1100input#15,e,e$

stop

open 8,8 1," 0: ramcart"

b,c: if e then close 15: print e;e$;b;c:

1110 for j = 32768 to 32999: read x: print#8,chr$(x);:

ch = ch + x: next: close8

1120ifch<>28345 then print " checksum error!": stop

1130 print " ** module created **": end

1140:

1150 data 0,128

1160 data 205, 56

1170 data 32,163

1180 data 253, 32

1190 data 32,191

1200 data 128,174

1210 data 172, 228

1220 data 134, 96

1230 data 132, 88

1240 data 1,202

1250 data 133, 91

1260 data 163,169

1270 data 141,120

1280 data 169, 13

1290 data 198,108

1300 data 44,170

1310 data 31,176

1320 data 128, 56

1330 data 229,128

1340 data 228,128

1350 data 95,165,

1360 data 164, 45

1370 data 140, 226

1380 data 134, 91

1390 data 133, 88

1400 data 160,128

1410 data 79, 71

1420 data 79, 32

1430 data 13, 0

9, 128

48,162

253, 32

91,255

227,162

225,128

128,174

172,226

134, 89

132, 45

169, 0

82,141

2,169

141,122

2, 3

165, 45

67,140

169,159

169,255

165, 43

44, 141

166, 46

128,132

169, 160

32, 191

32, 30

82, 65

76, 65

0, 0

, 94,254

5, 142

, 80,253

88, 32

251,154

132, 43

229,128

128,174

136,192

,134, 46

133, 90

,119, 2

78,141

2,169

, 56,165

229, 43

228,128

237, 229

237, 228

141,224

225,128

200, 208

90,142

133, 89

163, 96,

171, 96,

77, 32

, 82, 71

, 0, 0,

Listing 2: PAL Source for support program

MM

AH

IL

KH

1000 rem save" O:ramcart.pal",

1010 rem ♦* by: John bush and

1020 rem ** auto-start support

1030:

8

195, 194

22,208

32, 21

83,228

172,224

134, 44

132, 95

227,128

255, 208

169,160

32,191

169, 85

121, 2

4,133

46, 229

168,224

142,229

128,141

128, 141

128,133

133, 96

1,232

227,128

169, 0

169,204

80, 82

84, 79

69, 10

0, 0

noel nyman - Seattle, wa

prg for c64 ram cartridge

JP

LO

HE

EB

OK

FP

CM

KM

HL

BL

Kl

MC

NC

BC

IK

HA

LK

LG

DN

DF

LL

HA

HM

EA

NP

Al

GE

EJ

BG

PM

AE

Kl

FH

Ol

KN

LF

GK

ID

AD

MA

BH

FE

EH

Fl

EF

EF

KG

MO

FN

DA

KA

El

PL

JH

IP

DM

OP

AM

PI

IJ

1040 open 8,8,1, "0:ramcart

1050 sys 700

1060 .opt 08

1070* = $8000

1080;

1090 ;**♦ equates ***

1100;

1110txttab = $2b

1120vartab = $2d

1130 source = $5f

1140 end = $5a

1150 dest = $58

1160 ndx = $c6

1170keyd = $0277

1180 warm = $0302

1190 copy = $a3bf

1200strout = $ab1e

1210 vicctrl = $dO16

1220 vectors = $e453

1230 init = $e3bf

1240 ioinit = $fda3

1250ramtas = $fd50

1260restor = $fd15

1270 cint = $ff5b

1280nmicont= $fe5e

1290;

1300 ;*** auto-start basic

1310;

;start of basic text

;end of basic text

;start of source to copy

;end +1 of source to copy

;end +1 of destination

;no of characters in keyboard

buffer

;start of keyboard buffer

;basic warm start vector

;copy memory

print string

;vic control register

;copy basic vectors to ram

; initialize basic interpreter

initialize i/o

initialize memory pointers

; restore i/o vectors

;init screen and keyboard

;continue with nmi routine

program ***

1320 ;place start of code in cartridge vectors

1330 .byte <start,>start

1340 .byte <nmicont,>nmicont

1350 ; 'cbm' with bit 7 set

1360 .byte $c3,$c2,$cd

1370 .asc "80"

1380;

1390 ;'start' calls most of the routines

1400 ;which would be executed if a cartridge

1410 ;had not been detected, system vectors

1420 ;and basic are initialized.

1430;

1440 start Idx #5

1450 stx vicctrl

1460 jsr ioinit

1470 jsr ramtas

1480 jsr restor

1490 jsr cint

1500 cli

1510 jsr vectors

1520 jsr init

1530 Idx #$fb

1540 txs

1550;

initialize stack pointer

1560 ;copy the basic program from

1570 ;the area under $a000 to the start-of-basic

1580 ;and set up the basic text and variables

1590 ;vectors. place 'run'

1600 ;enter basic through

1610;

1620 Idy txtt

1630 Idx txtt + 1

n the keyboard buffer and

the warm start vector.

;store start of basic

;saved with program

Tho Transactor 52 Jon. 1987: Volume 7, tou»O4

OK

LE

PM

LJ

LJ

DG

GA

FA

FN

HO

PJ

FA

MP

NH

ND

FK

NN

PB

HA

ME

KD

HI

KN

EK

KP

DK

AB

IP

GC

GB

IB

JN

OB

DO

JC

NF

OB

MM

DA

PA

ND

JE

Cl

GL

NC

DM

PP

Jl

FN

BC

NO

Cl

DP

HG

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780cont

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960;

sty

stx

Idy

Idx

sty

stx

Idy

Idx

sty

stx

dey

cpy

bne

dex

sty

stx

Ida

sta

Ida

sta

jsr

Ida

sta

Ida

sta

Ida

sta

Ida

sta

Ida

sta

jmp

txttab

txttab +1

stsour

stsour+1

source

source +1

vart

vart +1

dest

dest + 1

#$ff

cont

vartab

vartab +1

#$a0

end + 1

#0

end

copy

#V

keyd

rv

keyd +1

#"n"

keyd+ 2

#$0d

keyd + 3

#4

ndx

(warm)

;at op system vector

;store start of source

;at vector for copy routine

;store end of destination

(+ 1)
;at copy routine vector

subtract one from low byte

;subtract borrow

;store op system vector

;end of source (+1) =

$a000

<return>

number of characters

1970 ; * * * store basic program to cartridge * * *

1980 calculate the size of the

1990; print an error message

2000 ;in the cartridge, if okay

2010;from

i basic text, and

if too large to fit

, subtract the size

$9fff to get the location of the start

2020 ;of the copy to be saved to cartridge, save

2030 ;that vector and the start and end of basic

2040 ;text for future use. set-up vectors for

2050;copy

2060;

2070 store

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

routine and copy

sec

Ida

sbc

tax

Ida

sbc

tay

cpx

bes

sty

stx

vartab +1

txttab+1 ;

vartab

txttab

#$1f ;

error ;

c

stsour ;

stsour + 1

program to cartridge.

find size of basic program

max size allowed

print error message and

}uit

store size temporarily

hA

CP

NP

DD

JG

HF

PI

GD

EJ

Jl

HC

EP

JG

PF

LK

KP

CK

KA

BF

IM

IH

PL

OE

HO

PF

LD

CJ

OH

CB

LJ

GC

LD

JC

NM

EM

IF

JG

AE

NE

Al

AK

EJ

AD

Jl

IC

ML

MC

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360 conti

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460;

sec

Ida

sbc

sta

Ida

sbc

sta

Ida

sta

sta

Ida

sta

sta

Idy

Idx

iny

bne

inx

sty

sty

stx

stx

Ida

sta

Ida

sta

jsr

rts

#$9f

stsour + 1

stsour +1

#$ff

stsour

stsour

txttab

txtt

source

txttab +1

txtt +1

source+ 1

vartab

vartab +1

conti

vart

end

vart+1

end + 1

#$a0

dest +1

#0

dest

copy

subtract size from $9fff to

find

;start of program in car

tridge memory

;store start of basic for

cartridge

;use and in vector for copy

routine1 V*' Vw' LI 1 1 \^>

;store end of basic (+1) for

cartridge

;use and vector for copy

routine

;store $a000 (end of car

tridge memory + 1)

;in vector for read routine

2470 ;*** print error messaqe **•

2480;

2490 error

2500

2510

2520

2530;

Ida

Idy

jsr

rts

2540 messafe

2550 .asc

2560 .byte

2570;

#<message

#>message

strout

*

"program too large"

$0a,$0d,$00

2580 ;*** system

2590;

2600 txtt

2610 vart

2620 stsour

2630;

2640 .end

.word

.word

.word

vector storage **•

0

0

0

;start of program in ram

;end of program in ram

;start of source in cartridge

The Transactor S3 Jon. 1987: Volume 7,touoO4

